Fixed Point Theorems for kg- Contractive Mappings in a Complete Strong Fuzzy Metric Space
نویسندگان
چکیده مقاله:
In this paper, we introduce a new class of contractive mappings in a fuzzy metric space and we present fixed point results for this class of maps.
منابع مشابه
On Fixed Point Theorems for Contractive-type Mappings in Fuzzy Metric Spaces
In this paper, we provide two different kinds of fixed pointtheorems in fuzzy metric spaces. The first kind is for the fuzzy$varepsilon$-contractive type mappings and the second kind is forthe fuzzy order $psi$-contractive type mappings. They improve thecorresponding conclusions in the literature.
متن کاملFixed point theorems for $alpha$-contractive mappings
In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملFixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result
In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.
متن کاملFixed point theorems for fuzzy ψ - contractive mappings in fuzzy metric spaces
In this paper we give a fixed-point theorem for fuzzy contractive mappings in the George and Veeramani p-complete fuzzy metric spaces.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 1
صفحات 15- 29
تاریخ انتشار 2018-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023